Impact of loperamide on the pharmacokinetics and tissue disposition of ritonavir-boosted oral docetaxel therapy; a preclinical assessment.

Abstract

RESULTS

The plasma exposure (AUC and Cmax) of docetaxel was not altered during loperamide treatment, nor were the ritonavir plasma pharmacokinetics. However, the hepatic and intestinal dispositions of ritonavir were somewhat changed in the simultaneous, but not 8-hour loperamide treatment groups, possibly due to loperamide-induced delayed drug absorption. The pharmacokinetics of loperamide itself did not seem to be influenced by ritonavir.

PURPOSE

An oral docetaxel formulation boosted by the Cytochrome P450 (CYP) 3 A inhibitor ritonavir, ModraDoc006/r, is currently under clinical investigation. Based on clinical data, the incidence of grade 1-2 diarrhea is increased with this oral docetaxel formulation compared to the conventional intravenous administration. Loperamide, a frequently used diarrhea inhibitor, could be added to the regimen as symptomatic treatment. However, loperamide is also a substrate of the CYP3A enzyme, which could result in competition between ritonavir and loperamide for this protein. Therefore, we were interested in the impact of coadministered loperamide on the pharmacokinetics of ritonavir-boosted oral docetaxel.

METHODS

We administered loperamide simultaneously or with an 8-hour delay to humanized CYP3A4 mice (with expression in liver and intestine) receiving oral ritonavir and docetaxel. Concentrations of docetaxel, ritonavir, loperamide and two of its active metabolites were measured.

CONCLUSION

These results suggest that delayed loperamide administration can be added to ritonavir-boosted oral docetaxel treatment, without affecting the overall systemic exposure of docetaxel.

More about this publication

Cancer chemotherapy and pharmacology
  • Volume 94
  • Issue nr. 1
  • Pages 79-87
  • Publication date 01-07-2024

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.