Quantitative assessment of affinity and kinetics is a critical component in the development of (receptor-targeted) radiotracers. For fluorescent tracers, such an assessment is currently not yet applied, while (small) changes in chemical composition of the fluorescent component might have substantial influence on the overall properties of a fluorescent tracer. Hybrid imaging labels that contain both a radiolabel and a fluorescent dye can be used to evaluate both the affinity (fluorescent label) and the in vivo distribution (radiolabel) of a targeted tracer. We present a hybrid label oriented and matrix-based scoring approach that enabled quantitative assessment of the influence of (overall) charge and lipophilicity of the fluorescent label on the (in vivo) characteristics of αvβ3-integrin targeted tracers. Systematic chemical alterations in the fluorescent dye were shown to result in a clear difference in the in vivo distribution of the different hybrid tracers. The applied evaluation technique resulted in an optimized targeted tracer for αvβ3-integrin, which combined the highest T/M ratio with the lowest uptake in other organs. Obviously this selection concept would also be applicable during the development of other (receptor-targeted) imaging tracers.
This website uses cookies to ensure you get the best experience on our website.