Validated LC-MS/MS method for simultaneous quantification of KRAS<sup>G12C</sup> inhibitor sotorasib and its major circulating metabolite (M24) in mouse matrices and its application in a mouse pharmacokinetic study.

Abstract

We have successfully developed and validated a bioanalytical assay using liquid chromatography tandem mass spectrometry to simultaneously quantify the first approved KRASG12C inhibitor sotorasib and its major circulating metabolite (M24) in various mouse matrices. M24 was synthesized in-house via low-pH hydrolysis. We utilized a fast and efficient protein precipitation method in a 96-well plate format to extract both analytes from biological matrices. Erlotinib was selected as the internal standard in this assay. Gradient elution using methanol and 0.1 % formic acid in water (v/v) was applied on an Acquity UPLC BEH C18 column to separate all analytes. Sotorasib, M24, and erlotinib were detected with a triple quadrupole mass spectrometer in positive electrospray ionization in multiple reaction monitoring mode. During the validation and sample quantification, a linear calibration range was observed for both sotorasib and M24 in a range of 4 - 4000 nM and 1 - 1000 nM, respectively. The %bias and %CV (both intra- and inter-day) for all tested levels in all investigated matrices were lower than 15 % as required by the guidelines. Sotorasib had a rather short room temperature stability in mouse plasma for up to 8 h compared to M24 which was stable up to 16 h at room temperature. This method has been successfully applied to measure sotorasib and M24 in several mouse matrices from three different mouse strains. We can conclude that the plasma exposure of sotorasib in mice is limited via human CYP3A4- and mouse Cyp3a-mediated metabolism of sotorasib into M24.

More about this publication

Journal of pharmaceutical and biomedical analysis
  • Volume 235
  • Pages 115612
  • Publication date 25-10-2023

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.