The gastrointestinal (GI) tract performs a range of functions essential for life. Congenital defects affecting its development can lead to enteric neuromuscular disorders, highlighting the importance to understand the molecular mechanisms underlying GI development and dysfunction. In this study, we present a method for gut isolation from zebrafish larvae at 5 days post fertilization to obtain live, viable cells which can be used for single-cell RNA sequencing (scRNA-seq) analysis. This protocol is based on the manual dissection of the zebrafish intestine, followed by enzymatic dissociation with papain. Subsequently, cells are submitted to fluorescence-activated cell sorting, and viable cells are collected for scRNA-seq. With this method, we were able to successfully identify different intestinal cell types, including epithelial, stromal, blood, muscle, and immune cells, as well as enteric neurons and glia. Therefore, we consider it to be a valuable resource for studying the composition of the GI tract in health and disease, using the zebrafish.
This website uses cookies to ensure you get the best experience on our website.