Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy.

Abstract

Mining large datasets using machine learning approaches often leads to models that are hard to interpret and not amenable to the generation of hypotheses that can be experimentally tested. We present 'Logic Optimization for Binary Input to Continuous Output' (LOBICO), a computational approach that infers small and easily interpretable logic models of binary input features that explain a continuous output variable. Applying LOBICO to a large cancer cell line panel, we find that logic combinations of multiple mutations are more predictive of drug response than single gene predictors. Importantly, we show that the use of the continuous information leads to robust and more accurate logic models. LOBICO implements the ability to uncover logic models around predefined operating points in terms of sensitivity and specificity. As such, it represents an important step towards practical application of interpretable logic models.

More about this publication

Scientific reports
  • Volume 6
  • Pages 36812
  • Publication date 23-11-2016

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.