With translation of the Drop-In γ-probe, radioguidance has advanced into laparoscopic robot-assisted surgery. Global-positioning-system-like navigation can further enhance the symbiosis between nuclear medicine and surgery. Therefore, we developed a fluorescence-video-based tracking method that integrates the Drop-In with navigated robotic surgery. Methods: Fluorescent markers, integrated into the Drop-In, were automatically detected using a daVinci Firefly laparoscope. Subsequently, a declipseSPECT-navigation platform calculated the Drop-In location within the surgical field. Using a phantom (n = 3), we pursued robotic navigation on SPECT/CT, whereas intraoperative feasibility was validated during porcine surgery (n = 4). Results: Video-based tracking allowed for navigation of the Drop-In toward all lesions detected on SPECT/CT (external iliac and common iliac artery regions). Augmented-reality visualization in the surgical console indicated the distance to these lesions in real time, confirmed by the Drop-In readout. Porcine surgery underlined the feasibility of the concept. Conclusion: Optical navigation of the Drop-In probe provides a next step toward connecting nuclear medicine with robotic surgery.
This website uses cookies to ensure you get the best experience on our website.