A prognostic classifier for patients with colorectal cancer liver metastasis, based on AURKA, PTGS2 and MMP9.

Abstract

RESULTS

Based on their putative prognostic value, EGFR (P(HRR < 1) = .02), AURKA (P(HRR < 1) = .02), VEGFA (P(HRR < 1) = .02), PTGS2 (P(HRR < 1) = .01), SLC2A1 (P(HRR > 1) < 01), HIF1α (P(HRR > 1) = .06), KCNQ1 (P(HRR > 1) = .09), CEA (P (HRR > 1) = .05) and MMP9 (P(HRR < 1) = .07) were included in the CART analysis (n = 201). The resulting classifier was based on AURKA, PTGS2 and MMP9 expression and was associated with OS (HRR 2.79, p < .001), also after multivariate analysis (HRR 3.57, p < .001). The prognostic value of the biomarker-based classifier was superior to the clinicopathological model (p = .001). Prognostic value was highest for colon cancer patients (HRR 5.71, p < .001) and patients not treated with systemic therapy (HRR 3.48, p < .01). Classification based on protein expression in primary tumors could be based on AURKA expression only (HRR 2.59, p = .04).

METHODS

Tissue micro-arrays (TMAs), containing resected CRCLM and corresponding primary tumors from a multi-institutional cohort of 507 patients, were immunohistochemically stained for 18 candidate biomarkers. Cross-validated hazard rate ratios (HRRs) for overall survival (OS) and the proportion of HRRs with opposite effect (P(HRR < 1) or P(HRR > 1)) were calculated. A classifier was constructed by classification and regression tree (CART) analysis and its prognostic value determined by permutation analysis. Correlations between protein expression in primary tumor-CRCLM pairs were calculated.

BACKGROUND

Prognosis of patients with colorectal cancer liver metastasis (CRCLM) is estimated based on clinicopathological models. Stratifying patients based on tumor biology may have additional value.

CONCLUSION

A classifier was generated for patients with CRCLM with improved prognostic value compared to the standard clinicopathological prognostic parameters, which may aid selection of patients who may benefit from adjuvant systemic therapy.

More about this publication

Oncotarget
  • Volume 7
  • Issue nr. 2
  • Pages 2123-34
  • Publication date 12-01-2016

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.