Oatp1a/1b transporters play a pronounced role in determining plasma levels and tissue distribution of MTX and PTX, thus affecting even highly hydrophobic drugs. Variation in OATP1A/1B transporter activity, due to genetic variation, inhibition, and/or tumor expression might affect toxicity and therapeutic efficacy of these anticancer drugs.
Organic anion-transporting polypeptides (OATP) mediate the cellular uptake of a broad range of drugs. The hydrophobic anticancer drug, paclitaxel (PTX), was recently identified as a substrate for OATP1B3 in vitro. We investigated the role of Oatp1a/1b transporters in the pharmacokinetics of PTX in vivo, as well as their impact at different dose levels of PTX and methotrexate (MTX).
In spite of its hydrophobicity, PTX systemic exposure (at 10 mg/kg) was increased by greater than 2-fold in Slco1a/1b(-/-) mice compared with wild-type, whereas PTX liver uptake was reduced by about 2-fold. Oatp1a/1b transporters displayed a high impact on PTX and MTX pharmacokinetics over a broad dose range. For MTX, even at 500 mg/kg, saturation of Oatp1a/1b was not observed, with a 3.4-fold increase in plasma and 30-fold decrease in liver levels in Slco1a/1b(-/-) mice compared with wild-type. Although beginning saturation of Oatp1a/1b was observed at the highest dose of PTX, plasma levels in Slco1a/1b(-/-) mice were still 1.7-fold increased and liver levels 1.5-fold decreased compared with wild-type.
Recently generated Slco1a/1b(-/-) (lacking all Oatp1a/1b transporters) and wild-type mice were intravenously dosed with 2, 10, or 50 mg/kg of PTX, or with 10, 50, or 500 mg/kg of MTX, and plasma and tissue drug concentrations were measured.
This website uses cookies to ensure you get the best experience on our website.