Sixty-nine cases and 345 controls were included for association analysis. One SNV (rs6923761), located on the gene glucagon-like peptide 1 receptor, was significantly associated with increased sunitinib exposure (P = 7.86 × 10-19). Twelve SNVs were suggestive for an association with sunitinib exposure (P ≤ 5 × 10-6).
While rs6923671 is associated with high sunitinib exposure, the underlying mechanism is not yet clarified and warrants further investigation. We could not confirm the earlier found associations between SNVs in candidate genes involved in the pharmacokinetic pathway of sunitinib and its efficacy and toxicity.
Sunitinib exhibits considerable interindividual variability in exposure. While the target total plasma concentration of sunitinib and its active metabolite is 50-87.5 ng/mL for the intermittent dosing schedule, ~10-21% of patients experience higher exposures (>87.5 ng/mL), correlated with an increased risk for toxicity. Previous research identified single nucleotide variants (SNVs) in genes from the sunitinib pharmacokinetic pathway to be associated with efficacy and toxicity. However, significant interindividual variability in exposure remains unexplained. Our aim was to identify genetic variants associated with supratherapeutic exposure of sunitinib.
This was a genome-wide association study. Cases were identified during routine therapeutic drug monitoring and consisted of patients with dose-normalized sunitinib plasma concentrations >87.5 ng/mL (intermittent dosing) or >75 ng/mL (continuous dosing). Controls were sampled from the historical cohort EuroTARGET who tolerated the standard dose of 50 mg in an intermittent schedule. SNVs were tested for an association with sunitinib exposure. A P-value ≤5 × 10-8 was considered significant and a P-value between 5 × 10-8 and 5 × 10-6 was considered suggestive.
This website uses cookies to ensure you get the best experience on our website.