Browser-based Data Annotation, Active Learning, and Real-Time Distribution of Artificial Intelligence Models: From Tumor Tissue Microarrays to COVID-19 Radiology.

Abstract

BACKGROUND

Artificial intelligence (AI) is fast becoming the tool of choice for scalable and reliable analysis of medical images. However, constraints in sharing medical data outside the institutional or geographical space, as well as difficulties in getting AI models and modeling platforms to work across different environments, have led to a "reproducibility crisis" in digital medicine.

AVAILABILITY

The open-source application is publicly available at , with a short video demonstration at .

RESULTS

We demonstrate that the web browser can be a means of democratizing AI and advancing data socialization in medical imaging backed by consumer-facing cloud infrastructure such as Box.com. As a case study, we test the accompanying platform end-to-end on a large dataset of digital breast cancer tissue microarray core images. We also showcase how it can be applied in contexts separate from digital pathology by applying it to a radiology dataset containing COVID-19 computed tomography images.

CONCLUSIONS

The platform described in this report resolves the challenges to the findable, accessible, interoperable, reusable stewardship of data and AI models by integrating with cloud storage to maintain user-centric governance over the data. It also enables distributed, federated computation for AI inference over those data and proves the viability of client-side AI in medical imaging.

METHODS

This study details the implementation of a web platform that can be used to mitigate these challenges by orchestrating a digital pathology AI pipeline, from raw data to model inference, entirely on the local machine. We discuss how this federated platform provides governed access to data by consuming the Application Program Interfaces exposed by cloud storage services, allows the addition of user-defined annotations, facilitates active learning for training models iteratively, and provides model inference computed directly in the web browser at practically zero cost. The latter is of particular relevance to clinical workflows because the code, including the AI model, travels to the user's data, which stays private to the governance domain where it was acquired.

More about this publication

Journal of pathology informatics
  • Volume 12
  • Pages 38
  • Publication date 12-11-2021

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.