The superior ability of dendritic cells (DC) in triggering antigen-specific T cell responses makes these cells attractive tools for the generation of antitumor or antiviral immunity. We report here an efficient retroviral transduction system for the introduction of antigens into DC. A retroviral vector encoding several CTL epitopes in a string-of-beads fashion in combination with the marker gene green fluorescence protein (GFP) was generated. Polyepitope transduced EBV-LCL could be isolated on the basis of GFP expression and were found to be sensitive to lysis by antigen-specific cytotoxic T cells, demonstrating that antigens encoded by the retroviral construct were stably expressed, processed, and presented in the context of HLA class I molecules. CD34(+) cells isolated from G-CSF mobilized peripheral blood were transduced with high efficiency (40-60%) with this retroviral construct. These cells could be considerably expanded in vitro and differentiated into mature DC without loss of the transduced antigen. DC transduced with the polyepitope constructs were able to mount a CTL response against an influenza epitope in the context of HLA-A2, demonstrating the antigen-specific CTL priming capacity of retrovirally transduced DC. Staining of the T cells with tetramers of HLA-A2 and the influenza virus peptide demonstrated a marked antigen-specific CTL enrichment after 2 in vitro stimulations using DC transduced with the polyepitope. However, additional in vitro stimulations of the T cells with transduced DC did not result in a further enrichment of tetramer staining cells.
This website uses cookies to ensure you get the best experience on our website.