The current confusion regarding the relevance of endogenous ceramide in mediating CD95/Fas-induced apoptosis is based mainly on (i) discrepancies in kinetics of the ceramide response between different studies using the same apoptotic stimulus and (ii) the observation that late ceramide formation (hours) often parallels apoptosis onset. We investigated CD95-induced ceramide formation in Jurkat cells, using two methods (radiolabeling/thin layer chromatography and benzoylation/high performance liquid chromatography), which, unlike the commonly used diglyceride kinase assay, discriminate between ceramide species and de novo formed dihydroceramide. We demonstrate that ceramide accumulates after several hours, reaching a 7-fold increase after 8 h, kinetics closely paralleling apoptosis induction. No fast response was observed, not even in the presence of inhibitors of ceramide metabolism. The majority ( approximately 70%) of the ceramide response remained unaffected when apoptosis was completely inhibited at the level of caspase-3/CPP32 processing by the inhibitor peptide DEVD-CHO. Exogenous cell-permeable C2-ceramide induced the proteolytic processing of caspase-3, albeit with somewhat slower kinetics than with CD95. DEVD-CHO dose-dependently inhibited C2-ceramide- or exogenous sphingomyelinase-induced apoptosis. The results support the idea that ceramide acts in conjunction with the caspase cascade in CD95-induced apoptosis.
This website uses cookies to ensure you get the best experience on our website.