Population Pharmacokinetics of MCLA-128, a HER2/HER3 Bispecific Monoclonal Antibody, in Patients with Solid Tumors.

Abstract

CONCLUSIONS

This analysis demonstrated that the pharmacokinetics of MCLA-128 exhibits similar disposition characteristics to other therapeutic monoclonal antibodies and that a flat dose of MCLA-128 in patients with various solid tumors is appropriate.

RESULTS

In total, 1115 serum concentration measurements were available from 116 patients. The pharmacokinetics of MCLA-128 was best described by a two-compartment model with linear and non-linear (Michaelis-Menten) clearance. Fat-free mass significantly affected the linear clearance and volume of distribution of the central compartment of MCLA-128, explaining 8.4% and 5.6% of inter-individual variability, respectively. Tumor burden significantly affected the non-linear clearance capacity. Simulations demonstrated that dosing based on body size parameters resulted in similar area under the plasma concentration-time curve for a dosing interval (AUC0-τ), maximum and trough concentrations of MCLA-128, compared to flat dosing.

BACKGROUND AND OBJECTIVES

MCLA-128 is a bispecific monoclonal antibody targeting the HER2 and HER3 receptors and is in development to overcome HER3-mediated resistance to anti-HER2 therapies. The aims of this analysis were to characterize the population pharmacokinetics of MCLA-128 in patients with various solid tumors, to evaluate patient-related factors that affect the disposition of MCLA-128, and to assess whether flat dosing is appropriate.

METHODS

MCLA-128 concentration data following intravenous administration were collected in a phase I/II clinical trial. Pharmacokinetic data were analyzed using non-linear mixed-effects modeling. Different compartmental models were evaluated. Various body size parameters including body weight, body surface area, and fat-free mass were evaluated as covariates in addition to age, sex, HER2 status, and tumor burden.

More about this publication

Clinical pharmacokinetics
  • Volume 59
  • Issue nr. 7
  • Pages 875-884
  • Publication date 01-07-2020

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.