A prediction model for response to immune checkpoint inhibition in advanced melanoma.

Abstract

Predicting who will benefit from treatment with immune checkpoint inhibition (ICI) in patients with advanced melanoma is challenging. We developed a multivariable prediction model for response to ICI, using routinely available clinical data including primary melanoma characteristics. We used a population-based cohort of 3525 patients with advanced cutaneous melanoma treated with anti-PD-1-based therapy. Our prediction model for predicting response within 6 months after ICI initiation was internally validated with bootstrap resampling. Performance evaluation included calibration, discrimination and internal-external cross-validation. Included patients received anti-PD-1 monotherapy (n = 2366) or ipilimumab plus nivolumab (n = 1159) in any treatment line. The model included serum lactate dehydrogenase, World Health Organization performance score, type and line of ICI, disease stage and time to first distant recurrence-all at start of ICI-, and location and type of primary melanoma, the presence of satellites and/or in-transit metastases at primary diagnosis and sex. The over-optimism adjusted area under the receiver operating characteristic was 0.66 (95% CI: 0.64-0.66). The range of predicted response probabilities was 7%-81%. Based on these probabilities, patients were categorized into quartiles. Compared to the lowest response quartile, patients in the highest quartile had a significantly longer median progression-free survival (20.0 vs 2.8 months; P < .001) and median overall survival (62.0 vs 8.0 months; P < .001). Our prediction model, based on routinely available clinical variables and primary melanoma characteristics, predicts response to ICI in patients with advanced melanoma and discriminates well between treated patients with a very good and very poor prognosis.

More about this publication

International journal of cancer
  • Volume 154
  • Issue nr. 10
  • Pages 1760-1771
  • Publication date 15-05-2024

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.