Impact of cone-beam computed tomography artifacts on dose calculation accuracy for lung cancer.

Abstract

BACKGROUND

To implement image-guided adaptive radiotherapy (IGART), many studies investigated dose calculations on cone-beam computed tomography (CBCT). A high HU accuracy is crucial for a high dose calculation accuracy and many imaging sites showed satisfactory results. It has been shown that the dose calculation accuracy for lung cancer lags behind.

PURPOSE

To examine why the dose calculation accuracy for lung is insufficient, the relative effects of the field-of-view (FOV), breathing motion, and scatter on dose calculation accuracy were studied.

CONCLUSIONS

Scatter and FOV are the main contributors to dose inaccuracies and motion has only a minor effect on dose calculation accuracy. Therefore, utilizing an appropriate scatter correction and FOV is important to achieve sufficient dose calculation accuracy to facilitate IGART for lung.

RESULTS

The differences in HU, SSIM and dose calculation accuracy for CBCTs with and without breathing motion were negligible (mean ΔHUmean = 6.4 vs. 13.7, mean SSIM = 0.941 vs. 0.957, mean γ (ref = MFOV) = 0.75). The SFOV resulted in a lower HU (mean ΔHUmean = -9.2 vs. 13.7) and SSIM (mean SSIM = 0.912 vs. 0.957), and therefore in dose differences compared to the MFOV (mean γ = 1.22). Scatter led to considerable discrepancies in all metrics. Adding only the ASG improved the results more than only applying a scatter correction algorithm. Combining ASG and scatter correction algorithm resulted in an even higher dose calculation accuracy.

METHODS

A framework was built to simulate CBCT scans for lung cancer patients by forward projecting repeat CT (rCT) scans for two scan geometries: small (SFOV) and medium FOV (MFOV). Breathing motion was modeled by applying a 4D deformation vector field to the mid-position rCT. Scatter was modeled by Monte-Carlo simulations with/without an anti-scatter grid (ASG). Simulated projections were reconstructed using filtered back-projection with/without scatter correction. In case of the SFOV, the CBCT images were patched with the planning CT scan in axial direction. The treatment plan was recalculated on the rCT and simulated CBCT. The mean Hounsfield unit (HU) difference (ΔHUmean), the structural similarity index measure (SSIM), and γ metrics were calculated for the CBCT datasets of various imaging settings.

More about this publication

Medical physics
  • Volume 51
  • Issue nr. 7
  • Pages 4709-4720
  • Publication date 01-07-2024

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.