Blood pressure influences end-stage renal disease of Cd151 knockout mice.

Abstract

Podocytes of the kidney adhere tightly to the underlying glomerular basement membrane (GBM) in order to maintain a functional filtration barrier. The clinical importance of podocyte binding to the GBM via an integrin-laminin-actin axis has been illustrated in models with altered function of α3β1 integrin, integrin-linked kinase, laminin-521, and α-actinin 4. Here we expanded on the podocyte-GBM binding model by showing that the main podocyte adhesion receptor, integrin α3β1, interacts with the tetraspanin CD151 in situ in humans. Deletion of Cd151 in mouse glomerular epithelial cells led to reduced adhesive strength to laminin by redistributing α3β1 at the cell-matrix interface. Moreover, in vivo podocyte-specific deletion of Cd151 led to glomerular nephropathy. Although global Cd151-null B6 mice were not susceptible to renal disease, as has been shown previously, increasing blood and transcapillary filtration pressure induced nephropathy in these mice. Importantly, blocking the angiotensin-converting enzyme in renal disease-susceptible global Cd151-null FVB mice prolonged their median life span. Together, these results establish CD151 as a crucial modifier of integrin-mediated adhesion of podocytes to the GBM and show that blood pressure is an important factor in the initiation and progression of Cd151 knockout-induced nephropathy.

More about this publication

The Journal of clinical investigation
  • Volume 122
  • Issue nr. 1
  • Pages 348-58
  • Publication date 01-01-2012

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.