Phosphoinositide phosphatase SHIP-1 regulates apoptosis induced by edelfosine, Fas ligation and DNA damage in mouse lymphoma cells.

Abstract

S49 mouse lymphoma cells undergo apoptosis in response to the ALP (alkyl-lysophospholipid) edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine), FasL (Fas ligand) and DNA damage. S49 cells made resistant to ALP (S49(AR)) are defective in sphingomyelin synthesis and ALP uptake, and also have acquired resistance to FasL and DNA damage. However, these cells can be re-sensitized following prolonged culturing in the absence of ALP. The resistant cells show sustained ERK (extracellular-signal-regulated kinase)/Akt activity, consistent with enhanced survival signalling. In search of a common mediator of the observed cross-resistance, we found that S49(AR) cells lacked the PtdIns(3,4,5)P(3) phosphatase SHIP-1 [SH2 (Src homology 2)-domain-containing inositol phosphatase 1], a known regulator of the Akt survival pathway. Re-sensitization of the S49(AR) cells restored SHIP-1 expression as well as phosphoinositide and sphingomyelin levels. Knockdown of SHIP-1 mimicked the S49(AR) phenotype in terms of apoptosis cross-resistance, sphingomyelin deficiency and altered phosphoinositide levels. Collectively, the results of the present study suggest that SHIP-1 collaborates with sphingomyelin synthase to regulate lymphoma cell death irrespective of the nature of the apoptotic stimulus.

More about this publication

The Biochemical journal
  • Volume 440
  • Issue nr. 1
  • Pages 127-35
  • Publication date 15-11-2011

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.