Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3).

Abstract

We have characterized the substrate specificity and mechanism of transport of the human multidrug resistance-associated protein 3 (MRP3). A murine fibroblast-like cell line generated from the kidneys of mice that lack Mdr1a/b and Mrp1 was retrovirally transduced with MRP3 cDNA. Stable clones overproducing MRP3 were resistant to the epipodophyllotoxins etoposide and teniposide but not to vincristine, doxorubicin, and cisplatin, drugs suggested to be MRP3 substrates by others. The resistance to etoposide was associated with reduced cellular accumulation and enhanced efflux of this drug and was not affected by depleting cells of glutathione but was inhibited by several common organic anion transport inhibitors. Membrane vesicles from infected insect cells expressing MRP3 mediated ATP-dependent transport of estradiol 17-beta-D-glucuronide, leukotriene C(4), dinitrophenyl S-glutathione but not glutathione itself, and etoposide glucuronide, a major metabolite of etoposide in vivo. The transport of estradiol 17-beta-D-glucuronide by MRP3 was inhibited in a concentration-dependent manner by both etoposide and methotrexate. Even though etoposide glucuronide is an excellent substrate for MRP3, this compound is not involved in the etoposide resistance of our MRP3 cells, as these cells extrude unmodified etoposide rather than etoposide glucuronide.

More about this publication

The Journal of biological chemistry
  • Volume 276
  • Issue nr. 49
  • Pages 46400-7
  • Publication date 07-12-2001

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.