No significant differences were detected between the two sequences in image quality (AUCVGC: 0.398, p = 0.087) and lesion visibility (AUCVGC: 0.534, p = 0.336) scores. Lesion characteristics (e.g benign and high-risk, versus malignant; small (≤10 mm) vs. larger (>10 mm)) did not result in different image quality or lesion visibility between sequences. Sensitivity (rs-EPI: 72.2% vs. ss-EPImIRBS: 78.5%, p = 0.108) and specificity (70.5% vs. 56.8%, p = 0.210, respectively) were comparable. In both sequences the mean ADC value was higher for benign and high-risk lesions than for malignant lesions (ss-EPI-mIRBS: p = 0.022 and rs-EPI: p = 0.055). On average, ss-EPI-mIRBS resulted in decreased overall reading time by 7.7 s/case (p = 0.067); a reduction of 17%. For malignant lesions, average reading time was significantly shorter using ss-EPI-mIRBS compared to rs-EPI (64.0 s/lesion vs. 75.9 s/lesion, respectively, p = 0.039).
In this study, we compare readout-segmented echo-planar imaging (rs-EPI) Diffusion Weighted Imaging (DWI) to a work-in-progress single-shot EPI with modified Inversion Recovery Background Suppression (ss-EPI-mIRBS) sequence at 3 T using a b-value of 2000 s/mm2 on image quality, lesion visibility and evaluation time.
Based on this study, the ss-EPI sequence using a b-value of 2000 s/mm2 enables for a mIRBS acquisition with quality and lesion conspicuity that is comparable to conventional rs-EPI, but with a decreased reading time.
From September 2017 to December 2018, 23 women (one case used for training) with known breast cancer were included in this study, after providing signed informed consent. Women were scanned with the conventional rs-EPI sequence and the work-in-progress ss-EPI-mIRBS during the same examination. Four breast radiologists (4-13 years of experience) independently scored both series for overall image quality (1: extremely poor to 9: excellent). All lesions (47 in total, 36 malignant, and 11 benign and high-risk) were evaluated for visibility (1: not visible, 2: visible if location is given, 3: visible) and probability of malignancy (BI-RADS 1 to 5). ADC values were determined by measuring signal intensity in the lesions using dynamic contrast-enhanced (DCE) images for reference. Evaluation times for all assessments were automatically recorded. Results were analyzed using the visual grading characteristics (VGC) and the resulting area under the curve (AUCVGC) method. Statistical analysis was performed in SPSS, with McNemar tests, and paired t-tests used for comparison.
This website uses cookies to ensure you get the best experience on our website.