The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes.

Abstract

CD151 is a cell surface protein that belongs to the tetraspan superfamily. It associates with other tetraspan molecules and certain integrins to form large complexes at the cell surface. CD151 is expressed by a variety of epithelia and mesenchymal cells. We demonstrate here that in human skin CD151 is codistributed with alpha3beta1 and alpha6beta4 at the basolateral surface of basal keratinocytes. Immunoelectron microscopy showed that CD151 is concentrated in hemidesmosomes. By immunoprecipitation from transfected K562 cells, we established that CD151 associates with alpha3beta1 and alpha6beta4. In beta4-deficient pyloric atresia associated with junctional epidermolysis bullosa (PA-JEB) keratinocytes, CD151 and alpha3beta1 are clustered together at the basal cell surface in association with patches of laminin-5. Focal adhesions are present at the periphery of these clusters, connected with actin filaments, and they contain both CD151 and alpha3beta1. Transient transfection studies of PA-JEB cells with beta4 revealed that the integrin alpha6beta4 becomes incorporated into the alpha3beta1-CD151 clusters where it induces the formation of hemidesmosomes. As a result, the amount of alpha3beta1 in the clusters diminishes and the protein becomes restricted to the peripheral focal adhesions. Furthermore, CD151 becomes predominantly associated with alpha6beta4 in hemidesmosomes, whereas its codistribution with alpha3beta1 in focal adhesions becomes partial. The localization of alpha6beta4 in the pre-hemidesmosomal clusters is accompanied by a strong upregulation of CD151, which is at least partly due to increased cell surface expression. Using beta4 chimeras containing the extracellular and transmembrane domain of the IL-2 receptor and the cytoplasmic domain of beta4, we found that for recruitment of CD151 into hemidesmosomes, the beta4 subunit must be associated with alpha6, confirming that integrins associate with tetraspans via their alpha subunits. CD151 is the only tetraspan identified in hemidesmosomal structures. Others, such as CD9 and CD81, remain diffusely distributed at the cell surface. In conclusion, we show that CD151 is a major component of (pre)-hemidesmosomal structures and that its recruitment into hemidesmosomes is regulated by the integrin alpha6beta4. We suggest that CD151 plays a role in the formation and stability of hemidesmosomes by providing a framework for the spatial organization of the different hemidesmosomal components.

More about this publication

The Journal of cell biology
  • Volume 149
  • Issue nr. 4
  • Pages 969-82
  • Publication date 15-05-2000

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.