Drosophila homeotic genes and vertebrate Hox genes are involved in the anteroposterior organization of the developing embryo. In Drosophila, the Polycomb- and trithorax-group genes are required to maintain the homeotic genes throughout development in the repressed or activated state, respectively. The murine Bmi-1 proto-oncogene was shown to exhibit homology to the Polycomb-group gene Posteior sex combs. Mice lacking the Bmi-1 gene revealed posterior transformations along the axial skeleton, whereas transgenic mice overexpressing Bmi-1 display anterior transformations. We have analysed the expression patterns of several Hox genes by RNA in situ hybridization on serial sections of 11.5- and 12.5-day Bmi-1 null mutant embryos. Furthermore, we have analysed the expression of a Hoxc-8/LacZ fusion gene in younger embryos. Our analyses show that Bmi-1 is involved in the repression of a subset of Hox genes from different clusters from at least day 9.5 onwards. We discuss the possibility that members of the murine Polycomb-group can form multimeric protein complexes of different compositions with varying affinity or specificity for different subsets of Hox genes.
This website uses cookies to ensure you get the best experience on our website.