Mammalian genetic approaches to study gene function have been hampered by the lack of tools to generate stable loss-of-function phenotypes efficiently. We report here a new vector system, named pSUPER, which directs the synthesis of small interfering RNAs (siRNAs) in mammalian cells. We show that siRNA expression mediated by this vector causes efficient and specific down-regulation of gene expression, resulting in functional inactivation of the targeted genes. Stable expression of siRNAs using this vector mediates persistent suppression of gene expression, allowing the analysis of loss-of-function phenotypes that develop over longer periods of time. Therefore, the pSUPER vector constitutes a new and powerful system to analyze gene function in a variety of mammalian cell types.
This website uses cookies to ensure you get the best experience on our website.