A single digital droplet PCR assay to detect multiple <i>KIT</i> exon 11 mutations in tumor and plasma from patients with gastrointestinal stromal tumors.

Abstract

BACKGROUND

Gastrointestinal stromal tumors (GISTs) are characterized by oncogenic KIT mutations that cluster in two exon 11 hotspots. The aim of this study was to develop a single, sensitive, quantitative digital droplet PCR (ddPCR) assay for the detection of common exon 11 mutations in both GIST tumor tissue and in circulating tumor DNA (ctDNA) isolated from GIST patients' plasma.

RESULTS

The ddPCR assay detected the exon 11 mutation in 21 of 22 tumors with exon 11 mutations covered by the assay. Mutations in ctDNA were detected at baseline in 13 of 14 metastasized patients, but in only 1 of 8 patients with localized disease. In serial plasma samples from 11 patients with metastasized GIST, a decrease in mutant droplets was detected during treatment. According to RECIST 1.1, 10 patients had radiological treatment response and one patient stable disease.

CONCLUSION

A single ddPCR assay for the detection of multiple exon 11 mutations in ctDNA is a feasible, promising tool for monitoring treatment response in patients with metastasized GIST and should be further evaluated in a larger cohort.

METHODS

A ddPCR assay was designed using two probes that cover both hotspots. Available archival FFPE tumor tissue from 27 consecutive patients with known KIT exon 11 mutations and 9 randomly selected patients without exon 11 mutations were tested. Plasma samples were prospectively collected in a multicenter bio-databank from December 2014. ctDNA was analyzed of 22 patients with an exon 11 mutation and a baseline plasma sample.

More about this publication

Oncotarget
  • Volume 9
  • Issue nr. 17
  • Pages 13870-13883
  • Publication date 02-03-2018

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.