Chromatin loops, which bring two distal loci of the same chromosome into close physical proximity, are the ubiquitous units of the three-dimensional genome. Recent advances in understanding the spatial organisation of chromatin suggest that several distinct mechanisms control chromatin interactions, such as loop extrusion by cohesin complexes, compartmentalisation by phase separation, direct protein-protein interactions and others. Here, we review different types of chromatin loops and highlight the factors and processes involved in their regulation. We discuss how loop extrusion and compartmentalisation shape chromatin interactions and how these two processes can either positively or negatively influence each other.
This website uses cookies to ensure you get the best experience on our website.