Histone eviction and chromatin relaxation are important processes for efficient DNA repair. Poly(ADP) ribose (PAR) polymerase 1 (PARP1) is a key mediator of this process, and disruption of PARP1 activity has a direct impact on chromatin structure. PARP inhibitors (PARPis) have been established as a treatment for BRCA1- or BRCA2-deficient tumors. Unfortunately, PARPi resistance occurs in many patients and the underlying mechanisms are not fully understood. In particular, it remains unclear how chromatin remodelers and histone chaperones compensate for the loss of the PARylation signal. In this Opinion article, we summarize currently known mechanisms of PARPi resistance. We discuss how the study of PARP1-mediated chromatin remodeling may help in further understanding PARPi resistance and finding new therapeutic approaches to overcome it.
This website uses cookies to ensure you get the best experience on our website.