Identifying cross-lineage dependencies of cell-type-specific regulators in mouse gastruloids.

Abstract

Correct gene expression levels are crucial for normal development. Advances in genomics enable the inference of gene regulatory programs active during development but cannot capture the complex multicellular interactions occurring during mammalian embryogenesis in utero. In vitro models of mammalian development, like gastruloids, can overcome this limitation. Using time-resolved single-cell chromatin accessibility analysis, we delineated the regulatory profile during mouse gastruloid development, identifying critical drivers of developmental transitions. Gastruloids develop from bipotent progenitor cells driven by the transcription factors (TFs) OCT4, SOX2, and TBXT, differentiating into the mesoderm (characterized by the mesogenin 1 [MSGN1]) and spinal cord (characterized by CDX2). ΔCDX gastruloids fail to form spinal cord, while Msgn1 ablation inhibits paraxial mesoderm and spinal cord development. Chimeric gastruloids with ΔMSGN1 and wild-type cells formed both tissues, indicating that inter-tissue communication is necessary for spinal cord formation. Our work has important implications for studying inter-tissue communication and gene regulatory programs in development.

More about this publication

Developmental cell
  • Publication date 11-03-2025

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.