Array comparative genomic hybridization (aCGH), BRCA1 promoter methylation, BRCA1 messenger RNA (mRNA) expression and EMSY amplification were assessed in 163 HER2-negative pretreatment biopsies from patients scheduled for neoadjuvant chemotherapy.
Tumors with homologous recombination deficiency (HRD), such as BRCA1-associated breast cancers, are not able to reliably repair DNA double-strand breaks (DSBs) and are therefore highly sensitive to both DSB-inducing chemotherapy and poly (ADP-ribose) polymerase inhibitors. We have studied markers that may indicate the presence of HRD in HER2-negative breast cancers and related them to neoadjuvant chemotherapy response.
Features of BRCA1 dysfunction were frequent in triple-negative (TN) tumors: a BRCA1-like aCGH pattern, promoter methylation and reduced mRNA expression were observed in, respectively, 57%, 25% and 36% of the TN tumors. In ER+ tumors, a BRCA2-like aCGH pattern and the amplification of the BRCA2 inhibiting gene EMSY were frequently observed (43% and 13%, respectively) and this BRCA2-like profile was associated with a better response to neoadjuvant chemotherapy.
Abnormalities associated with BRCA1 inactivation are present in about half of the TN breast cancers but were not predictive of chemotherapy response. In ER+/HER2- tumors, a BRCA2-like aCGH pattern was predictive of chemotherapy response. These findings should be confirmed in independent series.
This website uses cookies to ensure you get the best experience on our website.