Although the predictive performance achieved in this small exploratory dataset was limited, these preliminary data suggest that parameters from baseline MRI and FDG-PET/CT (in particular pre-therapy tumor volume) may contribute to prediction of early response to cCRT in cervical cancer.
Forty-six patients with LACC undergoing cCRT after staging with FDG-PET/CT and MRI were retrospectively analyzed. Primary tumor volumes were delineated on FDG-PET/CT, T2-weighted (T2W)-MRI and diffusion-weighted MRI (DWI) to extract the following quantitative parameters: T2W volume; T2W signalmean; DWI volume; ADCmean; ADCSD; MTV42%; and SUVmax. Outcome was the early treatment response, defined as the residual tumor volume on MRI 3-4 weeks after start of external beam radiotherapy with chemotherapy (before the start of brachytherapy): patients with a residual tumor volume <10 cm3 were classified as early responders. Imaging parameters were analyzed together with FIGO stage to assess their performance to predict early response, using multivariable logistic regression analysis with bi-directional variable selection. Leave-one-out cross-validation with bootstrapping was used to simulate performance in a new, independent dataset.
Early prediction of response to concurrent chemoradiotherapy (cCRT) could aid to further optimize treatment regimens for locally advanced cervical cancer (LACC) in the future.
T2W volume (OR 0.94, P = 0.003) and SUVmax (OR 1.15, P = 0.18) were identified as independent predictors in multivariable analysis, rendering a model with an AUC of 0.82 in the original dataset, and AUC of 0.68 (95% CI 0.41-0.81) from cross-validation.
To explore whether quantitative parameters from baseline (pre-therapy) magnetic resonance imaging (MRI) and FDG-PET/computed tomography (CT) have potential as predictors of early response to cCRT.
This website uses cookies to ensure you get the best experience on our website.