In many tumor cell types, ionizing radiation (IR) or DNA-damaging anticancer drugs enhance sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, which is of great clinical interest. We have investigated the molecular mechanism underlying the response to combined modality treatment in p53-mutant Jurkat T leukemic cells overexpressing Bcl-2. These cells are largely resistant to individual treatment with TRAIL or IR, but sensitive to combined treatment, in vitro as well as in vivo. We demonstrate that IR and DNA-damaging anticancer drugs enable TRAIL receptor-2 and CD95/Fas to bypass the mitochondrial pathway for effector caspase activation. This was validated by RNA interference for Bax and Bak and by overexpression of dominant-negative Caspase-9. Improved effector caspase activation was neither caused by altered expression of proapoptotic components nor by impaired activity of inhibitor of apoptosis proteins or nuclear factor-kappaB signaling. Rather, we found that pretreatment of cells with IR caused quantitative and qualitative changes in death receptor signaling. It strongly improved the capacity of ligand-bound receptors to recruit FADD and activate Caspase-8 and -10 in the death-inducing signaling complex, while c-FLIP(L) levels were unaffected.
This website uses cookies to ensure you get the best experience on our website.