We previously showed that ceramide (Cer) formed during the execution phase of apoptosis is derived from plasma membrane sphingomyelin (SM), most likely by a neutral sphingomyelinase activity (Tepper et al., J. Cell Biol. 150, 2000, 155-164). In this study, we investigated the involvement of a cloned putative human neutral sphingomyelinase (nSMase1) in this process. Site-directed mutagenesis of predicted catalytic residues (Glu(49), Asn(180), and His(272)) to Ala residues abolished the catalytic activity of nSMase1. Jurkat cells were retrovirally transduced with either wildtype or inactive (with all three point mutations) Myc-tagged nSMase1. Cells overexpressing wildtype nSMase1 showed dramatically elevated in vitro nSMase activity. However, nSMase1 gene transduction (wildtype or mutant) did not alter steady-state levels of SM, Cer, or glucosylceramide. Moreover, the Cer response and apoptosis sensitivity to ligation of the CD95/Fas receptor in cells overexpressing wildtype or mutant nSMase1 were identical to vector-transduced cells. We conclude that not nSMase1 but a different, yet to be identified, nSMase accounts for the generation of Cer during the execution phase of death receptor-induced apoptosis.
This website uses cookies to ensure you get the best experience on our website.