Translocations involving the Mixed Lineage Leukemia (MLL) gene generate in-frame fusions of MLL with more than 50 different partner genes (PGs). Common to all MLL translocations is the exchange not only of coding regions, but also of MLL and PG 3'-untranslated regions (3'UTRs). As a result, the MLL-PG fusion is normally highly expressed and considered the main driver of leukemia development, whereas the function of the PG-MLL fusions in leukemic disease is unclear. As 3'UTRs have been recognized as determinant regions for regulation of gene expression, we hypothesized that loss of the MLL 3'UTR could have a role in generating high MLL-PG levels and leukemia development. Here, we first tested the MLL-PG and PG-MLL mRNA levels in different leukemic cells and tumours and uncovered differential expression that indicates strong repression by the MLL-3'UTR. Reporter assays confirmed that the 3'UTR of MLL, but not of its main PGs, harbours a region that imposes a strong gene silencing effect. Gene suppression by the MLL 3'UTR was largely microRNA independent and did not affect mRNA stability, but inhibited transcription. This effect can at least partially be attributed to a tighter interaction of the MLL 3'UTR with RNA polymerase II than PG 3'UTRs, affecting its phosphorylation state. Altogether, our findings indicate that MLL translocations relieve oncogenic MLL-PG fusions from the repressive MLL 3'UTR, contributing to higher activity of these genes and leukaemia development.
This website uses cookies to ensure you get the best experience on our website.