Molecular heterogeneity in urothelial carcinoma and determinants of clinical benefit to PD-L1 blockade.

Abstract

Checkpoint inhibitors targeting programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) have revolutionized cancer therapy across many indications including urothelial carcinoma (UC). Because many patients do not benefit, a better understanding of the molecular mechanisms underlying response and resistance is needed to improve outcomes. We profiled tumors from 2,803 UC patients from four late-stage randomized clinical trials evaluating the PD-L1 inhibitor atezolizumab by RNA sequencing (RNA-seq), a targeted DNA panel, immunohistochemistry, and digital pathology. Machine learning identifies four transcriptional subtypes, representing luminal desert, stromal, immune, and basal tumors. Overall survival benefit from atezolizumab over standard-of-care is observed in immune and basal tumors, through different response mechanisms. A self-supervised digital pathology approach can classify molecular subtypes from H&E slides with high accuracy, which could accelerate tumor molecular profiling. This study represents a large integration of UC molecular and clinical data in randomized trials, paving the way for clinical studies tailoring treatment to specific molecular subtypes in UC and other indications.

More about this publication

Cancer cell
  • Volume 42
  • Issue nr. 12
  • Pages 2098-2112.e4
  • Publication date 09-12-2024

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.