Accurate in vivo dosimetry of a randomized trial of prostate cancer irradiation.

Abstract

CONCLUSION

Diodes can be used for accurate in vivo dosimetry during prostate irradiation in high-energy photon beams. The dose delivery in this randomized trial is guaranteed within the 2.5% limits on an individual patient basis. This could not be achieved without the in vivo dosimetry program, despite our high-standard quality assurance program of treatment delivery.

METHODS AND MATERIALS

Prostate patients are generally treated in our clinic with a 3-field isocentric technique: an 8-MV anteroposterior beam and 2 18-MV wedged laterals. All fields are shaped conformally to the PTV. Patients were randomized between two dose levels of 68 Gy and 78 Gy. During treatment, the entrance and exit dose were measured for each patient with diodes. Special 2.5-mm thick steel build-up caps were applied to make the diodes appropriate for measurements in 18-MV photon beams as well. Portal images were used to verify the correct position of the diodes and to detect and correct for gas filling in the rectum that may influence the exit dose reading. Entrance and exit dose measurements were converted to midplane dose, which was used in combination with a depth dose correction to obtain the dose at the specification point. An action level of 2.5% was applied.

PURPOSE

To guarantee an accurate dose delivery, within +/- 2.5%, in a Phase III randomized trial of prostate cancer irradiation (68 vs. 78 Gy) by means of a comprehensive in vivo dosimetry program.

RESULTS

The added build-up for the diodes in the 18-MV beams resulted in correction factors that were only slightly sensitive to changes in beam setup and comparable to the corrections used in the 8-MV beams for diodes without extra build-up. The calibration factor increased almost linearly with cumulative dose: 0.7%/kGy for the 8-MV and 1.2%/kGy for the 18-MV photon beams. The introduction of average correction factors made the analysis easier, while keeping the accuracy within acceptable limits. In a period of 3 years, 225 patients were analyzed, from which 8 patients needed to be corrected. The average ratio of measured and prescribed dose was 1.009 (standard deviation [SD] 0.012) for the total group treated on two linear accelerators. When the results were analyzed per accelerator, the ratios were 1.002 (SD, 0.001) for Accelerator A and 1.015 (SD, 0.001) for Accelerator B. This difference could be attributed to the cumulative effect of three small imperfections in the performance of Accelerator B that were well within the limits of our quality assurance program.

More about this publication

International journal of radiation oncology, biology, physics
  • Volume 49
  • Issue nr. 5
  • Pages 1409-18
  • Publication date 01-04-2001

This site uses cookies

This website uses cookies to ensure you get the best experience on our website.